logo

Standard Methods

Download the Entire Standard Methods
Version 3

(All files in.Adobe Acrobat .pdf format)


OR SELECT CHAPTER NUMBER TO DOWNLOAD AN INDIVIDUAL CHAPTER::

Table of Contents

Section

Page

 

1

Chapter 1

11

1.1

Primary objective

11

1.2

Secondary objectives

12

1.2.1

Bart testing methodologies can employ the video Bart reader

12

1.2.2.

The recommended incubation temperature

13

1.2.3

Bacterial populations are presented as predicted active cells per mL

13

1.2.4

Bacterial communities

13

1.2.5

Sample clarity

14

1.2.6

Storage of the testers

15

1.2.7

Samples taken from low temperature environments

17

1.2.8

Length of time for Bart testing

17

 

 

Chapter 2 Characteristics of the Bart Test

21

2.1

Characteristics of the Bart test

21

 

 

3

Chapter 3 Bart tester definitions

27

3.1

Introduction

27

3.2

Iron related bacteria (IRB- BART)

28

3.2.1

Reaction patterns for the IRB- Bart

28

3.2.1.1

Phase One IRB Reactions

29

3.2.1.2

Phase Two IRB Reactions 

30

3.2.1.3

Phase Three IRB Reactions

32

3.2.1.4

Phase Four IRB Reactions

33

3.1.3

Bacterial consorms recognized by reaction signatures in the IRB- BART

33

3.1.4

Time lapse determination of predictive active cell populations

34

3.3

Sulfate Reducing Bacteria (SRB-BART)

39

3.3.1

Introduction

39

3.3.2

Reaction patterns for the SRB- tester

41

3.3.3

Bacterial communities recognized by reaction signatures in the SRB- tester

42

3.3.4

Time lapse determination of predictive active cell populations (pac/mL)

44

3.4

Slime Forming Bacteria (SLYM- BART)

46

3.4.1

Introduction

46

3.4.2

Reaction patterns for the SLYM- tester

48

3.4.3

Bacterial species recognized by reaction signatures in the SLYM- Tester

50

3.4.4

Time lapse determination of predictive active SLYM- cell populations

51

3.5

Heterotrophically Active Bacteria (HAB- Bart Testers)

53

3.5.1

Introduction

53

3.5.2

Reaction patterns for the HAB- Tester

57

3.5.3

Bacterial consorms recognized by reaction at 22±2oC in the HAB- tester

59

3.5.3.1

Time lapse determination of predicted active cell populations using HAB- tester

59

3.5.3.2

Time lapse determination of predicted active cell populations using HAB- tester 

incubated at 22±2o C

60

3.5.3.3

Time lapse determination of predictive active cell populations, WW

- HAB- Testers (28±1oC) .

62

3.5.3.4

Time lapse determination of predictive active cell populations as pac/mL,

environmental HAB- BART (28±1oC)

63

3.6

Acid Producing Bacteria (APB- BART)

65

3.6.1

Introduction

65

3.6.2

Reaction patterns for the APB- tester

69

3.6.3

Bacterial reaction signatures in the APB­- tester

70

3.6.4

Time lapse determination of predictive active cell populations APB - tester

70

3.7

Denitrifying Bacteria (DN- BART)

72

3.7.1

Introduction

72

3.7.2

Reaction patterns for the DN- Tester

74

3.7.3

Bacterial activities recognized by denitrification in the DN- tester

75

3.74

Time lapse determination of DN- predictive active cell populations

75

3.8

Nitrifying Bacteria (N- Bart)

77

3.8.1

Introduction

77

3.8.2

Reaction patterns for the N- tester

79

3.8.3

Bacterial consorms recognized by reaction signatures in the N- BART

81

3.8.4

Determination of predictive active nitrifying populations

81

3.9

Micro-algae (ALGE- BART)

82

3.9.1

Introduction

82

3.9.2

Reaction patterns for the ALGE- Tester

94

3.9.3

Micro-algal communities recognized by reaction signatures in the ALGE- tester.

86

3.9.4

Time lapse determination of predictive active micro-algal cell populations

86

3.10

Fluorescent Bacteria (FLOR - BART)

88

3.10.1

Introduction

88

3.11

POOL BACTERIA (POOL- BART)

90

3.11.1

Introduction

90

3.12

Enhanced bacterial activity (ENH- BART)

92

3.12.1

Introduction

92

3.13

Standard Bacteriological Community Code (SBCC)

94

3.13.1

Introduction

94

3.13.2

Trigger protocols to determine whether full BSCC should be attempted.

96

3.13.3

Generation of BSCC from Bart generated data

100

3.14

Pantone Color Recognition for the Bart Tester Reactions

111

3.14.1

Introduction

111

3.14.2

Bart predicted active cells population summary

115

 

 

4

Chapter Four Factors Affecting BARTs

121

4.1

Significant Factors that can affect the BART testing procedures

121

4.2

Sampling

121

4.3

Oxidation-Reduction Potential (ORP) implications from BART tester reactions

124

4.4

Visual BART reader (VBR) test systems

126

4.5

Biofilms, Biomass and Tester terminology

127

4.6

Collecting and storage of water samples for Bart testing

128

4.7

Testing at sea

133

4.8

Microbiologically influenced corrosion (MIC) and the Bart testers

135

4.9

Chlorine disinfection and potential impact on testing

137

4.10

Relationships between time lapse and predicted bacterial populations, colony forming units (cfu) and

predicted active cell (pac) comparison.

139

4.11

Health risks to users of the water and the managed environment.

141

4.12

Zones of Interrogation (ZIP), Microbe hunting using Testers

143

4.13

ATP testing for microbial activity

145

4.14

Temperature influence on Testing

148

4.15

Impact of salts on bacterial activity

150

4.16

Testing cloudy and turbid samples

152

 

 

5

Sample Preparation 

153

5.1

Preparation of Samples

153

 

 

6

Chapter Six Disposal of Testers

157

6.1

Disposal of used testers

157

6.2

Sterilization of used BART testers.

158

6.3

Sanitization of used BART testers.

160

6.3.1

Specifications for sanitization protocol

161

6.3.2

Protocol DBI 631 for sanitization of used Bart testers

162

6.4

Disinfection of Bart testers prior to disposal

164

6.4.1

Specifications for sanitization protocol

164

6.4.2

Protocol DBI 641 for disinfection of used Bart testers

164

 

 

7

Chapter Seven Special Applications of the BART Testers

167

7.1

Specialty Tester uses, water well diagnostics 

167

7.2

Selecting the testers for water well diagnostics

168

7.3

Diagnosing water wells

170

7.4

Water well treatment claims and reality

171

 

 

8

Chapter Eight Tester Function

175

8.1

How the BART tester functions

175

8.2

Environments created by the BART testers

175

 

 

9

Chapter Nine BART Tester Parameter Codes

181

9.1

BART tester parameter codes (Pcodes)

181

9.2

IRB- BART Pcode: iron biotester

181

9.3

SRB- BART Pcode: sulfide biotester

181

9.4

SLYM- BART Pcode: slime biotester

182

9.4

HAB- BART Pcode: bacterial biotester

182

9.6

APB- BART Pcode: acidogenic biotester

182

9.7

N- BART Pcode: nitrate biotester

183

9.8

DN- BART Pcode: nitrite biotester

183

9.9

FLOR- BART Pcode: glow biotester

183

9.10

ALGE- BART Pcode: glow biotester

183

9.11

ENH- BART Pcode: bacterial enhancer

184

 

 

Chapter Eleven BART Conversion Tables

185

10.1

Conversion Tables

185

 

 

Risk Analysis using BART testers

191

11.1

Introduction 

191

11.2

IRB- BART Pcode: iron biotester

193

11.3

SRB- BART Pcode: sulfide biotester

194

11.4

SLYM- BART Pcode: slime biotester

195

11.5

HAB- BART Pcode: bacterial biotester

197

11.6

APB- BART Pcode: acidogenic biotester

198

11.7

N- BART Pcode: nitrate biotester

199

11.8

DN- BART Pcode: nitrite biotester

200

11.9

FLOR- BART Pcode: glow biotester

201

11.10

ALGE- BART Pcode: microalgae biotester

202

 

 

Innovative BART tester Applications

205

12.1

Bioremediation

206

12.2

Black goop in oil

207

12.3

Black layer in soil

209

12.4

Black smokers

211

12.5

Cancers

214

12.6

Clay, from kiln

216

12.7

Clay, separator

217

12.8

Clouds

218

12.9

Concrete, curing

220

12.10

Drywall, sheetrock

221

12.11

Encrustation

222

12.12

Filter, air

224

12.13

Filter, membrane

225

12.14

Gypsum

227

12.15

Ice, cores

228

12.16

Ice, gas hydrates

230

12.17

Ice, glacier

232

12.18

Ice, pack

233

12.19

Mold spores

235

12.20

Mud

236

12.21

Oil, crude

237

12.22

Oil, machining

239

12.23

Oil, tar sand

241

12.24

Petroleum hydrocarbons, surface leakage & groundwater contamination

243

12.25

Plug, black

245

12.26

Plug, iron-rich

246

12.27

Rain, acid

247

12.28

Rain

249

12,29

Scale, carbonate-rich

250

12.30

Snow

251

12.31

Tubercle

252

12.32

Water, condensed

253

12.33

Water, deep oceanic

255

12.34

Water, produced from gas wells

257

12.35

Water, produced from oil wells

259

12.36

Water, saline

260

12.37

Wastewater, sanitary

262

 

 

Chapter Thirteen Risk Assessment for Corrosion, Plugging and Health

263

13.1

Using the Bart tester analytical system for the projection of Risk.

263

13.2

Confidence rating

265

13.3

Predicted Corrosion Risk (CR)

265

13.4

Predicted Plugging risk (PPR)

269

13.5

Health risk (HR)

273

 

 

Chapter Fourteen Rapid Detection of Microbial Activity using E-tATP

277

14.1

Introduction

277

14.2

E-tATP determination

278

14.3

Provisional Protocol to determine the E-tATP concentration in liquid samples

279

14.4

Procedure for the Generation of RLU values for the E-tATP

280

14.4.1

Calibration

280

14.4.2

Determination of the RLU from an Active Sample that has been subjected to Enhancement (E-tATP)

281

14.4.3

Calculation Protocol for the Determination of the E-tATP

281

14.5

Relationship of generated E-tATP value to Biochemical Oxygen Demand

282

14.6

Rapid BOD ATP test system, requirements

284

14.6.1

Parts to complete a Total ATP test

284

14.7

Provisional Protocol, Rapid BOD (ATP)

285

14.8

Procedure (a) Generation of RLU values

285

14.9

Protocol b, calculation of ATP

286

14.1

E-tATP interpretation in Bart testing

286

 

 

Chapter Fifteen Visual Bart Reader VBR I and II systems

289

15.1

Introduction

289

15.2

Preparation of the HAB- or BOD- tester for %CBR testing

290

15.3

Comparisons with the standard BOD5 protocol

292

15.4

Operational instructions for the VBR II, time lapse camera and %CBR software

293

15.4.1

Camera Protocol

295

15.5

Calculation of the %CBR from the project populations.

297

15.6

Decision Tree

298

15.7

Statistical Comparison of generated %CBR values and BOD5

299

15.8

Summary of the proposed decision tree for %CBR validation of suitability for FE discharge

with a low BOD5 potential.

303

15.9

Advantages in the %CBR testing protocols

304

15.10

%CBR program management

307

 

 

Biological  interpretation of the Periodic Table

311

16.1

Introduction

311

16.2

Biological interpretation of the Periodic Table

312

 

Further Information

315